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Abstract. This project produced a Python language implementation of locally interpolated regression (LIR) and neural network
(NN) algorithms from empirical seawater property estimation routines (PyESPERv1.01.01). These routines estimate total
alkalinity, dissolved inorganic carbon, total pH, nitrate, phosphate, silicate, and oxygen from geographic coordinates, depth,
salinity, and 16 combinations of O to 4 additional predictors (temperature and biogeochemical information), and were
previously available only in the MATLAB programming language. Here we document modifications to reduce discrepancies
between the implementations, calculate the disagreements between the methods, and quantify Global Ocean Data Analysis
Project (GLODAPV2.2022) reconstruction errors with PyESPER. While the PyESPER routine based on neural networks
(PYyESPER_NN) faithfully reproduces the corresponding MATLAB routine estimates of properties that do not require
anthropogenic carbon change information, PyESPER_LIR and—to a lesser extent—PyESPER_NN estimates for total pH and
dissolved inorganic carbon do not exactly reproduce the MATLAB routine estimates due to differences in interpolation and
extrapolation methods between the programming languages. While the MATLAB and Python LIR-based estimates are not
identical, we show that they are similarly skilled at reproducing the GLODAPv2.2022 data product and are thus comparable.
This project increases the accessibility of ESPERv1.01.01 algorithms by providing users with code in the freely available

Python language and enables future ESPER updates to be released in multiple coding languages.

1 Introduction

Ship-based biogeochemical data, as compiled within the Global Ocean Data Analysis Project (GLODAP; Lauvset et al., 2022)
have high precision and accuracy, but are seasonally biased and spatially sparse (Hauck et al., 2023). International efforts to
deploy biogeochemical (BGC) profiling floats with broad spatial coverage and high temporal resolution (10 days) are ongoing
(Bittig et al., 2019), with potential to greatly augment available ocean carbon cycle and biogeochemical data. These data can
then support a wide variety of research topics and management applications (e.g., warming, acidification, eutrophication,
deoxygenation, fisheries, and ecosystem studies). This strategy leverages the high precision and accuracy of ship-based
measurements to calibrate and validate the BGC float sensors periodically throughout a float deployment. To do this, machine
learning and regression algorithms—uwhich take advantage of the strong regional correlations between seawater properties in
the open ocean, and especially the ocean interior (Bittig et al., 2018; Carter et al., 2017, 2021)—are used to map the ship-based

information onto “reference depth” portions of the float profiles.

The empirical seawater property estimation routines (ESPERv1.01.01, henceforth referred to as ESPERS), originally written
in MATLAB programming language, aim to help realize the full potential of BGC float data by using machine learning
techniques and regression strategies to predict total alkalinity (TA), dissolved inorganic carbon (DIC), pH on the total scale

(pHT), phosphate, nitrate, silicate, and oxygen from commonly measured physical and BGC parameters (Carter et al., 2021).
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The algorithms are used to calibrate float profiles (Maurer et al., 2021). In addition, since two carbonate system property
measurements are necessary to fully quantify the carbonate system in seawater (Zeebe and Wolf-Gladrow, 2001) and BGC
floats only have the capability to measure pHr, these algorithms have the potential to provide (calculated) TA or DIC as a
secondary constraint for the marine carbonate system. ESPERs have also been used to map ship-based information across
spatial and temporal scales for other applications including estimation of TA for adjustments of pH and fugacity of CO, (fCO,)
to in situ conditions for data products (Jiang et al., 2021), and estimation of TA and seawater properties necessary for estimation
of ocean acidification indicators (Jiang et al., 2020; Sharp et al., 2024). Recent research has also shown that similar machine
learning estimation algorithms have potential for the development of four-dimensional data products such as the Gridded
Ocean Biogeochemistry from Acrtificial Intelligence — Oxygen (GOBAI-O; Sharp et al., 2023) and the Mapped Observation-
Based Oceanic DIC (MOBO-DIC; Keppler et al., 2020).

1.1 Importance

Tanhua et al. (2021) and others have argued that researchers should utilize workflows that produce findable, accessible,
interoperable, and reusable (FAIR) data products. ESPERs are publicly available (findable) on Zenodo, with updates published
to GitHub, free (accessible), and provide the option for users to cite a digital object identifier (DOI) for each version (reusable).
However, until now ESPERSs were only available in the proprietary MATLAB programming language, which posed a barrier

to accessibility and interoperability that we aim to address.

1.2 Goals

This project aimed to create a freely available Python implementation of ESPERs (PyESPERvV1.01.01, henceforth referred to
as PyESPERSs; Carter et al., 2021; Dias and Carter, 2025) that is equivalent to the MATLAB version within +2 x Estimate

Uncertainties (o) for all estimated biogeochemical properties (TA, DIC, pHr, nitrate, phosphate, silicate, and oxygen).
PYESPER code is freely available at Zenodo and updates will be made available at the GitHub repository (see Sect. “Code
availability™).

2 Methods

ESPER algorithms were translated into Python coding language, while associated files were either translated into Python or
read by Python as MATLAB files. Some original methods were required to allow interpolations to be similar in Python to
those of MATLAB ESPERs.

2.1 ESPERs

ESPERs allow estimation of biogeochemical seawater properties using coordinates, depth, salinity, and other optional inputs

from a single function call. While sharing a similar set of equations and required input data, ESPERSs have two variants that
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use locally interpolated regressions (ESPER_LIR) and neural networks (ESPER_NN), respectively, along with a mixed
estimate (ESPER_Mixed) that is the mean of estimates from the two functions (Carter et al., 2017).

2.1.1 Locally interpolated regressions

The most recent versions of ESPER_LIRs (version 1.01.01; version 3 of LIRs) use a standard set of equations of the format
shown by Eqg. (1) to estimate up to seven different biogeochemical water properties using up to 16 equations with different

combinations of input parameters (see Sect. “Appendix A”, Tables Al and A2; Carter et al., 2021):

X=C0+zcipi (1)

where X is the estimated property (TA, DIC, pHr, nitrate, phosphate, silicate, or oxygen), Co is the intercept, and Ci is the
coefficient for each of the n predictors P;. The intercepts (Co) and coefficients (C;) vary with location (latitude, longitude, and
depth) and are different for each of the predictor variables (P;; Tables Al and A2; Carter etal., 2021). The most recent ESPERs
were trained and assessed on the GLODAPV2.2020 (Olsen et al., 2020) data product, which includes data from 946 cruises
and spanning 1972-2019, and additional data sets from the Mediterranean Sea and Gulf of Mexico (Carter et al., 2021,
Supplementary Information) taken from the Coastal Ocean Data Analysis Project (CODAP, Jiang et al., 2021) and the
CARIMED data product (Alvarez et al., 2019).

When the ESPER_LIR function is called, the routines interpolate a pre-determined grid of C’s (intercepts and coefficients) to
user-defined locations. Linear interpolation is used within the grid and for extrapolation, and this method utilizes an underlying
Delaunay triangulation with MATLAB’s scatteredInterpolant function (Carter et al., 2021). The three-dimensional
interpolation algorithm is implemented differently in MATLAB and Python, and although both calculations are valid, this

difference in implementation is the source of most disagreements we find and later quantify between ESPER and PyESPER.

ESPER_LIR coefficients have been determined on a grid using a moving window regression strategy similar to the approach
first outlined by Velo et al. (2013), resulting in a set of intercept and coefficient estimates for each of 16 equations for 7
possible properties at 44,957 total locations on a 5° latitude (-84.5°-85.5° N) x 5° longitude (-19.5°-375.5° E) x 33 depth (0—
5500 m) ocean interior grid subsampled from the World Ocean Atlas gridded product (Carter et al., 2016, 2017, 2021). These

coefficients were fit using regressions relating the property of interest (X) to different combinations of up to five predictor
properties (P, Tables Al and A2), relating to each possible equation as in Eq. (1). Depth (scaled to 2—15) is included as a

coordinate for coefficient interpolation, but depth is not used as a predictor for the current ESPER version (it was included in
an earlier version, but only when predicting pHr; Carter et al., 2017). Data for each regression fit are selected from “windows”
of data that are within 15° latitude, 30°/cosine(latitude) in longitude, and within either (100 + z/10) m depth or 0.1 kg m™ of

the estimated density of seawater at that coordinate location, where z is depth in m (Carter et al., 2021). If either the depth-
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based or the density-based criterion applies, data are selected for that location, which allows water masses to impact window
selection along with depth. If fewer than 100 measurements fall within a window, the dimensions are doubled. A weighting
term is applied to reduce to cost of regression misfits to data that are distant or at significantly different depths from the
location, with a cap to prevent overfitting to nearby coordinates (see Carter et al., 2021). Regression coefficients (Co and C;)
are then fit using Eq. (2), with separate regressions for northern hemisphere Atlantic, Mediterranean, and Arctic, and other

global locations, to prevent interpolation across Central America or the Bering Strait.

XW = (co + Z CiPi>W 2

PyESPER_LIR does not duplicate this portion of the effort but instead builds directly upon the grid of coefficients obtained
for and utilized by the MATLAB implementation of ESPER_LIR.

When the function is called, ESPER_LIR uses MATLAB’s scatteredInterpolant (linear interpolation and extrapolations)
function to interpolate this previously-created grid of regression coefficients to the user-provided set of coordinates, resulting
in coefficient estimates at the desired locations (Carter et al., 2021). This method uses a Delaunay triangulation of the scattered
sample points to perform interpolations and extrapolations. Different valid mathematics can be used to obtain these Delaunay
triangulations and to extrapolate and interpolate, and efforts to identify a Python method for these tasks that exactly replicated
MATLAB results were unsuccessful. The most similar and least computationally intensive results to those of MATLAB’s
scatteredInterpolant were produced by combining Python’s scipy package functions LinearNDlInterpolator (interpolate
subpackage) and Delaunay (spatial subpackage; Virtanen et al., 2020). However, since LinearNDInterpolator does not
extrapolate, and other Python functions did not produce similar results to those of MATLAB when extrapolating, the gridded
set of three-dimensional coordinates (44,957 locations based on the World Ocean Atlas) and corresponding coefficient
estimates provided by ESPER_LIRs were expanded in MATLAB to 106,400 locations on a grid with estimates every 5°
latitude (-94.5°-90.5° N) and longitude (-19.5°-375.5° E) and up to 9000 m depth and applied to scatteredInterpolant within
ESPER_LIR to provide coefficient estimates for the external locations through extrapolation. This grid, with equivalent
coefficients within the original parts of the grid and extrapolations outside of the grid, was read in Python when LIRs were
called. The expanded grid allowed Python functions to avoid extrapolations and rely solely on interpolation and triangulation
methods when estimating coefficients at user-defined locations. While some of these locations are unphysical (e.g., + >90° N
or on land), the coefficients nevertheless provide valid extrapolations from MATLAB for the full possible domain that can
then be interpolated in PYESPER_LIR. PyESPER LIR otherwise replicated ESPER LIR’s separation of data from the Atlantic

Ocean, Mediterranean Sea, and Arctic Ocean and data from the Indo-Pacific and Southern Ocean regions.
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During the creation of this expanded grid, a grouping error was observed in current versions of MATLAB ESPER_LIRs.
Specifically, the mirrored portion of the grid found at < 0° E and > 360° E and north of 40° S are not correctly flagged as
belonging to the Atlantic grid. The practical effect of this bug was that estimates near the Prime Meridian and near the cutoff
between the Southern Ocean and the Atlantic Ocean had extrapolated coefficients instead of interpolated coefficients. This
bug was fixed for both MATLAB ESPER_LIR and PyESPER_LIR comparisons for this paper, and a fixed grouping routine
is now provided at the original MATLAB ESPER repository with corresponding documentation and will be included in future
updates to ESPER_LIRs.

2.1.2 Neural networks

ESPER_NNs use feed-forward neural networks with latitude, depth, cosine(longitude-20°E), cosine(longitude-110°E) and the
parameters from Table A2 as predictors. Four neural networks are used in each of the two ocean regions, which are the same
as those used for LIRs (Atlantic-Mediterranean-Arctic and Indo-Pacific-Southern), resulting in 896 total neural networks (8
for each of 16 combinations of predictors for 7 property estimates; Carter et al., 2021). A committee (ensemble) of four
previously-created neural networks with different combinations of neurons and hidden layers, including a single one-hidden-
layer network with 40 neurons and three two-hidden-layer networks with 30/10, 25/15, and 20/20 neurons in the first/second

hidden layers is used to minimize the impact of errors from any one neural network (Carter et al., 2021).

In ESPER_NN the neural networks are encoded as functions to avoid requiring access to the Machine Learning toolbox within
MATLAB. Here we further translate these functions to Python. The resultant Python functions replicate the functions in
ESPER_NN to within machine precision. ESPER_NNSs linearly interpolate between the two regions of neural networks by
latitude across the Southern Atlantic Ocean and Bering Sea and between the North Pacific and Arctic Oceans. Zonal transitions
in the Southern Atlantic and Indo-Pacific-Southern Ocean network are also implemented. This interpolation uses custom-

written 1 or 2D interpolations that are handled identically in both programming environments.

2.1.3 Mixed estimates

The mixed estimate for each input location is the mean of the LIR and NN estimates and therefore is trivially reproduced by a

simple single function call within Python.

2.1.4 Anthropogenic carbon

The impacts of anthropogenic carbon (Can) are approximated in ESPER and PyESPERV1.0, which rely on a 1° x 1° gridded
transit time distribution (Waugh et al., 2006) based Can: product referenced to the year 2002 (Lauvset et al., 2016), and estimate
Cant Using a transient steady state assumption (Gammon et al., 1982; Gruber et al., 2019; Tanhua et al., 2007). The ESPER

estimate assumes that oceanic Can increases proportionally to atmospheric anthropogenic CO2, and furthermore that the
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structure of the Can vertical profile remains constant with continuous exponential increases of atmospheric CO; and ocean Cant
according to Eq. (3; Carter et al., 2021).

— 0.018989(year—2002)

Cant,year,location ant_year_location e

®)

The coefficient in Eq. (3) is derived from Gruber et al.'s (2019) assumption of a 28% increase in Cay from 1994-2007, and
enables estimating Cant for a location in a desired year when C,n is known for that same location in a reference year (2002;
Carter et al., 2021). This approach does not allow for non-steady-state variations, which is accounted for in overall uncertainty

estimates, and is noted as a significant source of uncertainty for projections beyond ~2030.

ESPERs were trained on data for pHr and DIC which were transformed to the year 2002, then modified back to the original
measurement dates using Eq. (3). ESPERs and PyESPERs estimate the Cax component of DIC and pHr in output variables for
2002 by interpolating the 2002 Can: grid to user-provided coordinates and then applying Eq. (3) to estimate Can: for the user-
requested estimate year. As with original ESPERs, this method is not meant to be used when Cay is of primary interest, but
rather provides a means of quickly adjusting DIC or pHr to a reference year (Carter et al., 2021). Likewise, these methods are
not adequate for making reliable predictions beyond the year 2030 (Carter et al., 2021).

2.2 Uncertainty estimation

ESPERs and PyESPERs return depth- and salinity-dependent uncertainties for each property at the 1o (one standard
uncertainty) level, meaning approximately 95% of new open-ocean measurements from GLODAPv2.2022 should fall within
+ twice the ESPER uncertainties (Carter et al., 2021). As in Carter et al. (2021), baseline error estimates in depth and salinity
space (Ex es) are interpolated based on root mean square errors (RMSESs) of all predictions from validation versions of the
routines within bins of salinity and depth. ESPER_LIRs and PyESPER_LIRs scale these uncertainties using user-provided
predictor uncertainty estimates (Epi_providged). EQ. (4) is used when user-provided uncertainties exceed default assumed input
uncertainties (Epi_pefaurr; Table A3):

2 (4)

, o (X 20X

EX_Output = EX_Est - Z (ﬁ EPi_Default) + (ﬁEPi_Provided)
=1 t i=1 :

where % is the sensitivity of the property estimate X to the i predictor Pi. ESPER_NNs and PyESPER_NNs estimate

sensitivities by iteratively perturbing the input predictors if the user specifies uncertainties that are larger than default. Mixed

uncertainties are the minimum uncertainties assessed for LIR and NN estimates.
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2.3 Assessment

For many applications, the most critical validation is a test of the reconstruction of withheld data. However, such an exercise
requires training alternative versions of the method after withholding data, and, as of now, PyESPERV1.0 is not separately
trained, but is instead reliant on the ESPER training that was performed and validated previously with MATLAB (Carter et al.
2021). For this publication, we aim to instead show that PyESPERV1.0 and ESPER provide quantitatively similar results and
assert that the validation presented earlier for ESPER in MATLAB can be considered to also be appropriate for PyESPER in
all but a limited number of specific exceptional cases. To support this claim, PyESPERv1.0 and ESPER were used to estimate
values for the GLODAPv2.2022 data product (1,381,248 sets of measurements; Fig. 1) with each equation and output variable
combination. This dataset included a wide range of input data, and comparison of PyESPERV1.0 and ESPER was primarily
considered from application to the high-quality “open ocean” (o) portion of the GLODAP dataset as in Carter et al. (2021),
defined as GLODAP data with only World Ocean Circulation Experiment (WOCE) data quality control flag categories of 2
(Acceptable) and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible
input and measurement data, and for salinities between 30-37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHr, and
764,301 for phosphate, nitrate, silicate, and oxygen). Additional comparison with the entire GLODAPv2.2022 dataset (“whole
ocean” or w), including NaNs and anomalous data with salinities <30 and temperatures <0 °C, which are not recommended for
use with ESPERSs, is presented in Sect. “Appendix B”. These comparisons are used as a rigorous test of the fidelity of the
PyESPERvV1.0 estimates to the ESPER estimates. Resulting estimates were compared graphically and with normalized root
mean square error (RMSE;; equivalent to RMSE divided by the mean of the MATLAB estimate for each variable) for each
equation case globally and regionally, and across depths. RMSE, was used because it allows for comparison between variables
of different scales. Additionally, where measured values were present in the dataset, both ESPER and PyESPERV1.0 were
validated against the measured data, though, again, this is not a validation of the method as much as a check that both variants

provide similar values.

2.3.1 DIC application

As an additional comparison of the LIR method differences, DIC estimates from both PyESPER_LIR and ESPER_LIR were
applied to the Roemmich and Gilson Argo-derived climatology (Roemmich and Gilson, 2009) to create mapped annual surface
estimates of DIC.



https://doi.org/10.5194/egusphere-2025-458
Preprint. Discussion started: 11 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

90° N 5= : . e
e e
i S 7" } B
EIEDINR =k
£ / .'..L' % A .[,. - v
0 R A Htt | f 1
] ‘%}4 ,- . TR 2 :
\TTUR) ) z

b T ] o Bl
90°s i
(@) 20w 18w 9w 0
5 5 5
x10° . x10~ o5 x10™
3.
10 I 2 "
2| 1.5
w 5 ‘ [ 1
S 1! il
§ hmvl‘mfh w0
0 [l |
§(b)o 20 40 (%C)o 10 20 30 &i)o 2 4 6
O Salinity Temperature (°C) Phosphate (umol kg™)
5,z x104 x10° x10°
() M =
€ ;
510 ) . 2
= 2

. | - 1Jﬂﬂ

() — . [ N—. (] AP . —
(e 20 40 (o 100 200 (g)0 200400600
Nitrate (umol kg')  Silicate (umol kg™') 8xygen (umol kg')

Figure 1: Location of GLODAPv2.2022 data (n=1,381,248) used to compare PyESPER to MATLAB ESPER estimates
215 (a), and histograms of the distributions of measured GLODAPV2.2022 variables used as inputs for PyESPERvV1.01.01
and ESPER algorithms (b-g).
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3 Results and Discussion

PyESPERV1.0 and ESPER produced open ocean estimates with mean differences (Python estimate — MATLAB estimate) of

<+0.04 for all parameters, and NNs had smaller mean differences of <+0.004 for all parameters (units are umol kg* except for
pHr) estimated from open ocean GLODAPV2.2022 data, although the standard deviations of these differences and uncertainties
associated with estimates were at times larger than the mean differences (Tables 1 and 2). The greatest RMSE, was 2.08x1072
for silicate estimates using LIRs. PYESPER_NN functioned as an equivalent data product to ESPER_NN for all data. For open
ocean data that is within the World Ocean Atlas Grid of <5500 m depth, PyESPER_LIRs functioned similarly to ESPER_LIRs,

with a large majority of identical estimates produced between the two data products.

3.1 Data product validation

Results of comparisons between MATLAB ESPERs and PyESPERSs are described below.

3.1.1 Locally interpolated regressions

When compared to the ESPER_LIR results for the open ocean (,) GLODAPV2.2022 dataset, all equation-case and desired
outcome variable combinations from PyESPER (PyESPER_LIR — ESPER_LIR estimates) resulted in mean differences of
<+0.04 (Table 1). Mean (+standard deviation; RMSE,) PyESPER — ESPER_LIR difference for TA was -4.8x10* pumol kg™’
(1.1 pmol kg'; RMSE=4.6x10*), DIC was 3.4x102 umol kg! (+1.6 umol kg!; RMSE,=7.3x10*), pHr was -5.6x10°
(+4.2x103; RMSE[=5.4x10*), phosphate was 3.1x10** pmol kg™' (+1.4x10-2 umol kg™!; RMSE,=8.4x10%), nitrate was 2.2x10°
3 umol kg™ (+3.1x10 umol kg™!; RMSE,=1.3x102), silicate was 2.3x10% (+1.2 umol kg~'; RMSE,=2.1x10?), and oxygen
was 4.0x10% pmol kg™! (2.1 umol kg™ !; RMSEn=1.1x10?; Table 1). The very wide range of input data resulted in a wide
range of estimates from both ESPER_LIRs and PyESPER_LIRs for all variables (Table 1; Fig. 2; for  see Sect. “Appendix
B”, Fig. B1), representing the large range of biogeochemical property values that can be found in the oceans. PyESPER_LIR
and ESPER_LIR results worked similarly well in predicting measured values at locations, even with the outlier and unusual
input data used (see Table B1), suggesting that Python estimates, although not identical to MATLAB estimates for these
interpolations, were equivalently valid reconstructions.

10
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250 Figure 2: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to

255

MATLAB estimates (x-axis) for open ocean (,) data and all equations combined for TA (a, 13,384,096 total estimates

from all equations), DIC (b, 13,384,096 estimates), pHr (c, 13,384,096 estimates), phosphate (d, 13,384,096 estimates),

nitrate (e, 12,718,592 estimates), silicate (f, 12,640,896), and oxygen (g, 12,757,792 estimates) calculated from
GLODAPv2.2022 with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable)

and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and
measurement data, and for salinities between 30-37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHr, and 764,301

12

for phosphate, nitrate, silicate, and oxygen). Units for all except pH+ are in pmol kg. Note the differences in x- and y-

axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates.
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PYESPER_LIRs were within 2c (~95% of measurements should fall within this uncertainty level) for most ocean regions, with
a few exceptions which occurred predominantly in coastal areas or deep waters (Figs. 3 and 4). These locations aligned well
with places where coefficients were extrapolated in the MATLAB implementation (see Sect. 2.1.1, “Locally interpolated
regressions”; Figs. 3, 4, and 5; for  Fig. B2 and B3). Within regions where MATLAB was interpolating, far outliers were
uncommon (Figs. 3, 4, 5, B2, and B3). When ESPER_LIR and PyESPER_LIR were applied to temperature and salinity from
the Roemmich and Gilson climatology for the year 2023 (Roemmich and Gilson, 2009), patterns of surface DIC distribution
were similar with a few minor nuances (Fig. 6). Notably, low DIC estimates covered a broader spatial extent in the western
equatorial Pacific and Indian Oceans for PyESPER_LIR estimates, and PyESPER_LIR appeared to have a slightly low bias in
some places relative to ESPER_LIR. Beyond these minor differences, the mapped DIC demonstrates the similarity of the data
products’ functionality in an applied setting. While ESPER LIR and PyESPER LIR do not produce quantitatively identical
estimates, it should be noted that both routines perform similarly well at reconstructing the GLODAPv2.2022 data product

(Table 1; for , Table B1). These routines should not be considered identical but are comparable.

3.1.2 Neural networks

When compared to the ESPER_NN results for the open ocean () GLODAPv2.2022 dataset, all equation-case and desired
outcome variable combinations from PyESPER_NN (PyESPER — ESPER_NN estimates) resulted in mean differences of
<£0.004 (Table 2), a much smaller difference than for LIR comparisons. Mean (tstandard deviation; RMSE,) offset for TA
for PyESPER_NN — ESPER_NN was -4.5x102 pmol kg ™! (+5.9x10°° pmol kg~'; RMSE,=2.5x10"12), DIC was -3.0x10° umol
kg™! (+9.3x10°2 umol kg~!; RMSE=4.2x107), pHr was 1.1x10° (+2.3x10#; RMSE,=3.0x10®), phosphate was -6.2x101* umol
kg™! (+6.6x101* umol kg™'; RMSE=1.3x1019), nitrate was -7.8x102% pmol kg™' (+8.9x10° pmol kg™'; RMSE=3.8x10Y),
silicate was -1.2x1022 umol kg ™' (#2.0x10° umol kg™'; RMSE,=3.4x101), and oxygen was -4.4x10"*3 umol kg™ (+2.1x10°%0
umol kg™!; RMSEn=1.1x101%; Table 2). Since a very wide range of input data were used, a wide range of estimates were
produced from both ESPER_NNs and PyESPER_NNs for all variables (Fig. 7), representing the high variability that can be
found in the oceans (especially coastal regions, some of which were included in the “open ocean” dataset due to having
salinities between 30—37 and quality-controlled data). Both PyESPER_NN and ESPER_NN results were nearly identical, even

when outlier results were obtained from unusual input data from environments where ESPERs are not recommended for use
(for example, resulting in negative DIC estimates in Fig. B4; see also Table B2). The largest relative disagreements were found
for DIC and pHr, though these disagreements remained small relative to measurement uncertainties. These larger offsets are
attributed to the programming language differences in the interpolation of the Ca: adjustment, which is only applied to these

two properties.
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290 Figure 3: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total

295

estimates n=13,384,096 for TA (a), DIC (b), pH~ (c), and phosphate, 12,718,592 for nitrate (d), 12,640,896 for silicate
(e), and 12,757,792 for oxygen (f)) for the open ocean (), where small blue circles represent differences <2 x
uncertainties of the MATLAB estimates (n=13,344,924 for TA, 13,354,980 for DIC, 13,349,438 for pHr, 13,357,843 for
phosphate, 12,688,861 for nitrate, 12,597,608 for silicate, and 12,721,483 for oxygen), and red circles represent
differences >2 x uncertainties of the MATLAB estimates (n=39,172 for TA, 29,116 for DIC, 34,658 for pHr, 26,253 for
phosphate, 29,731 for nitrate, 43,288 for silicate, and 36,309 for oxygen). Open ocean estimates are calculated from
GLODAPv2.2022 with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable)

and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and
measurement data, and for salinities between 30-37.
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Figure 4: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally
interpolated regression estimates are greater than 2 x the estimate uncertainties for the open ocean (,, Nn=13,344,924
for TA (a), 13,354,980 for DIC (b), 13,349,438 for pH+ (c), 13,357,843 for phosphate (d), 12,688,861 for nitrate (e),
12,597,608 for silicate (f), and 12,721,483 for oxygen (g)). Open ocean estimates are calculated from GLODAPv2.2022
with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) and secondary
quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and measurement
data, and for salinities between 30-37.
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Figure 5: Map of locations where MATLAB was interpolating (n=1,365,170, blue) and extrapolating (n=16,078, red)
from the grid to GLODAPv2.2022 data (a) and depth of extrapolations (b).

3.1.3 Anthropogenic carbon estimates

Although inconsistencies in results occur between Python and MATLAB when interpolating (same issue noted in Sect. 2.1.4,
“Anthropogenic carbon”), anthropogenic carbon (Cant) estimates were similar between the two versions of ESPER. This was
demonstrated by differences in DIC and pHr estimates for NNs, which only interpolate when estimating the contribution of
Cant to estimates (Fig. 7). The next generation of ESPER updates will include a new method for estimating Can: (Tracer-Based
Rapid Anthropogenic Carbon Estimation, or TRACEvV1; Carter et al., submitted), which uses neural networks and should
eliminate the need for interpolation. Currently, when Ca. estimates are required, the results from PyESPER_NNs are

functionally identical to those from ESPER_NNS.

3.2 Timing

PYESPERs take considerably longer than ESPERS to produce estimates. On a MacBook Air using Python Jupyter Notebook
with standard internet connection, PyESPER_NN produced results 0—1500 x slower than ESPER_NN, while PyESPER_L IR
produced results about 7-500 x slower than ESPER_LIRs, with magnitude of the slowdown dependent upon the number of
variable inputs and equation cases requested and number of estimates required (Table 3). ESPER_NNs were the fastest to
execute, and took <2 s for all time tests, even when large datasets and all variable-equation case scenarios were requested.
ESPER_LIRs were the next-fastest, requiring <33 s for all time tests, followed by PYESPER_NNSs, which typically required
5-15 s to execute, but required >1400 s (23 min) for running large datasets and all variable-equation case scenarios.
PyESPER_LIRs were the slowest, and typically required 22-500 s to execute, but the longest scenario required 7530 s (125

min; Table 3). It is possible that this code can be further optimized for speed in future updates.
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335 climatology (Roemmich and Gilson, 2009).
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Figure 7: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB estimates
(x-axis) for open ocean (,) data and all equations combined for TA (a, 4,899,512 total estimates from all equations), DIC
(b, 5,497,004 estimates), pHt (c, 3,188,864 estimates), phosphate (d, 12,228,432 estimates), nitrate (e, 12,228,432
estimates), silicate (f, 12,228,432 estimates), and oxygen (g, 12,228,560 estimates) calculated from GLODAPv2.2022
350 with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) and secondary
quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and measurement
data, and for salinities between 30-37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pH~, and 764,301 for phosphate,
nitrate, silicate, and oxygen). Units for all except pHr are in umol kg*. Note the differences in x- and y-axes scales.
RMSE, is the normalized root mean square error, or the RMSE divided by the mean of all estimates from
355 MATLAB_NN.
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Table 3: Time required to produce estimates for PyESPERv1.01.01s and ESPERs (LIRs and NNs) for different desired

variable, equation-case, and number of estimates scenarios.

Number of PyESPER_NN ESPER_NN PyESPER_LIR ESPER _LIR
Variable Equation(s)  Estimates time (s) time (s) time (s) time (s)
TA 1 10 6.55 0.01 2235 0.77
TA 1 100 5.87 0.01 19.98 0.60
TA 2 100 5.82 0.01 25.90 0.79
TA 3 100 5.79 0.01 22.82 0.81
TA 4 100 5.90 0.01 24.01 0.78
TA 5 100 5.80 0.00 23.60 0.75
TA 6 100 5.88 0.01 22.42 0.79
TA 7 100 5.88 0.00 23.03 0.78
TA 8 100 5.84 0.00 2251 0.80
TA 9 100 5.87 0.00 22.42 0.81
TA 10 100 5.82 0.01 22.60 0.74
TA 1 100 5.84 0.00 22.28 0.74
TA 12 100 5.90 0.00 2243 0.75
TA 13 100 5.88 0.00 22.37 0.79
TA 14 100 5.82 0.01 22.46 0.77
TA 15 100 5.81 0.00 22.35 0.84
TA 16 100 5.81 0.01 2257 0.74
TA 1-16 100 11.06 0.04 312.13 0.62
TA 1 1000 11.50 0.03 29.69 0.76
TA 1 10,000 61.54 0.12 57.59 0.83
TA 1 100,000 950.78 0.62 325.87 1.55
DIC 1 100 5.86 1.55 32.51 2.69
DIC 1-16 100 10.86 1.53 365.58 1.54
pH 1 100 6.09 0.06 54.65 0.81
pH 1-16 100 15.37 0.46 766.74 3.41
Phosphate 1 100 5.85 0.01 23.46 3.39
Phosphate 1-16 100 11.01 0.06 376.30 0.80
Nitrate 1 100 5.85 0.01 23.07 0.74
Nitrate 1-16 100 11.04 0.05 364.13 3.56
Silicate 1 100 5.84 0.02 26.84 3.64
Silicate 1-16 100 11.02 0.04 365.34 0.82
Oxygen 1 100 6.97 0.01 24.60 0.78
Oxygen 1-16 100 10.98 0.04 385.28 2.15
All Variables 1 100 11.81 0.01 194.31 13.86
All Variables 1 10,000 147.26 0.10 561.29 15.17
All Variables 1-16 100 49,53 0.09 3182.56 15.26
All Variables 1-16 10,000 1443.63 1.67 7530.23 3213
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3.3 Future directions

Updated ESPERs will be trained and assessed using GLODAPv2.2023 (or later versions), which includes 1108 cruises
(compared to 946 cruises from GLODAPv2.2020, the current data product used. Additionally, future ESPERs will incorporate
depth (z) as an optional predictor variable for consistency with LIPHR, a prior version for estimating pH+ (Carter et al., 2017).
The implementation of updated Can estimation methods should additionally improve the accuracy and efficiency of both
ESPERs and PyESPERs when Can estimates are required. Future versions of ESPER written in MATLAB may be modified to
improve interoperability with the Python implementation (i.e., to ensure the interpolation routines are identical in all instances
between languages).

4 Data Availability

Data used for reconstruction and estimate comparisons is available through GLODAP (https://glodap.info; see Lauvset et al.,
2022 and Olsen et al., 2020). The temperature and salinity gridded climatology created by Roemmich & Gilson (2009) was
created with data from the Argo Program.

5 Code Availability

PYESPERV1.01.01 preliminary Jupyter Notebook, affiliated files, and analyses files are available through LMD’s GitHub
page (https://github.com/LarissaMDias) and archived through Zenodo (doi: 10.5281/zenodo.15133085) . Updates to
PyESPERV1.01.01 will also be published through LMD’s GitHub page and archived through Zenodo. ESPERs (Carter,
2021) and original associated files used in creation of PyESPERV1.01.01 are available at BRC’s GitHub page at
https://github.com/BRCScienceProducts. Input data used for comparisons are available through the GLODAP website
(https://glodap.info).

6 Conclusions

A near-replicate of ESPERs has been produced in the freely available Python programming language. This algorithm data
product will allow Python users or researchers with limited funds an alternate, free method for using ESPERS (other than the
proprietary MATLAB), increasing the accessibility of the original ESPER algorithms. The same logic applied to the original
MATLAB ESPERs was applied within the Python coding language (PYESPERs, version 1.01.01), and results have
demonstrated comparability to ESPER estimates. Estimates from PYyESPER_NNs precisely align with those from ESPER_NNs
for all equations and desired outcome variable combinations (Fig. 7) and estimates from these two routines are essentially
identical. PyESPER_LIR estimates differ from ESPER_LIR estimates for some coastal and deep-water regions between the

two coding languages due to triangulation, extrapolation, and interpolation differences, but were more similar throughout all
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portions of the open ocean (Figs. 2, 3, and 4). Notably, PyESPER_LIR performs equivalently to ESPER_LIR when
reconstructing the training data from GLODAPv2.v2022, so estimates produced from these two routines should be considered
comparable rather than identical. Nevertheless, we do not recommend using PyESPER_LIR in coastal or deep (>5500 m)
waters when primarily interested in comparing results with those of the MATLAB implementation of ESPER_LIR. Future

updates to ESPERs will include updates to PyESPERs, with adjustments to allow for greater consistency and speed.

7 Appendices

Appendix A: ESPER specifications

Sets of equations, predictor variables, and measurement uncertainties used in ESPER and PyESPER (adapted from Carter et

al., 2021) are shown below.

Table Al: Input predictor variable combinations used for each ESPER equation (adapted from Carter et al., 2021),

where S is salinity, T is temperature, and A, B, and C are defined in Table S2 (below).

Equation Number | Predictor Variables
1 S,T,A,B,C
2 S,T,A C
3 S,T,B,C
4 S, T,C
5 S T,AB
6 S, T,A
7 S, T,B
8 S, T
9 S,A, B, C
10 S,A C
11 S,B,C
12 S,C
13 S,A B
14 S, A
15 S, B
16 S
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Table A2: Input predictor variables (A, B, and C) for each estimated property (adapted from Carter et al., 2021).

Estimated Property A B C

TA Nitrate Oxygen | Silicate

DIC Nitrate Oxygen | Silicate

pHt Nitrate Oxygen | Silicate
Phosphate Nitrate Oxygen | Silicate
Nitrate Phosphate | Oxygen | Silicate
Silicate Phosphate | Oxygen | Nitrate
Oxygen Phosphate Nitrate | Silicate

Table A3: Default measurement uncertainties (Epi perauit) for ESPERs and PyESPERs (adapted from Carter et al.,

2021), where @ is potential temperature.

Property Units Uncertainty
S - 0.003, absolute
0 °C 0.003, absolute
Phosphate umol kg? 2%, relative
Nitrate umol kgt 2%, relative
Silicate umol kgt 2%, relative
Oxygen umol kg 1%, relative

Appendix B: Comparison using entire GLODAPv2.2022

Results of comparisons of PyESPER with ESPER for the entire GLODAPV2.2022 dataset, including the entire oceanic and

coastal salinity range and data of all quality control flag categories are shown below.
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Figure B1: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to
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MATLAB estimates (x-axis) for whole ocean () data and all equations combined (22,099,968 total estimates from all

equations for each variable), for TA (a), DIC (b), pHr (c), phosphate (d), nitrate (e), silicate (f), and oxygen (g) derived

using all equations and calculated from entire GLODAPv2.2022 data, including NaN’s, coastal data, and all data

guality control flag categories (n=1,381,248). Units for all except pHrare in umol kg*. Note the differences in x- and y-

axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of all MATLAB

estimates. The large range of sometimes unrealistic estimates along the x-axis can be attributed to anomalous and

sometimes erroneous input data used for predictions.
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Figure B2: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total
estimates n=22,099,968 for all variables) for the whole ocean (), where small blue circles represent differences <2 x
uncertainties of MATLAB estimates (n=22,034,967 for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHr (c),
22,057,220 for phosphate (d), 22,045,770 for nitrate (), 22,024,674 for silicate (f), and 22,045,827 for oxygen (g)), and
red circles represent differences >2 x uncertainties of MATLAB estimates (n=65,001 for TA, 45,920 for DIC, 54,642 for
pH, 42,748 for phosphate, 54,198 for nitrate, 75,294 for silicate, and 54,141 for oxygen). Whole ocean estimates are
calculated from the entire GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag
categories (n=1,381,248).
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Figure B3: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally
445 interpolated regression estimates are greater than 2 x the estimate uncertainties for the whole ocean (w, N=22,034,967
for TA (a), 22,054,048 for DIC (b), 22,045,316 for pH+ (c), 22,057,220 for phosphate (d), 22,045,770 for nitrate (e),
22,024,674 for silicate (f), and 22,045,827 for oxygen (g)). Whole ocean estimates are calculated from the entire
GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag categories (n=1,381,248).
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Figure B4: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB
estimates (x-axis) for whole ocean () data and all equations combined for TA (a, 17,802,134 total estimates from all
equations), DIC (b, 17,802,134 estimates), pH~ (c, 17,799,566 estimates), phosphate (d, 17,802,134 estimates), nitrate (e,
17,395,954 estimates), silicate (f, 17,445,310 estimates), and oxygen (g, 17,220,360 estimates) derived using all equations
and calculated from entire GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag
categories (n=1,381,248). Units for all except pHrare in umol kg*. Note the differences in x- and y-axes scales. RMSE,
is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates. The large range of
sometimes unrealistic estimates along the x-axis can be attributed to anomalous and sometimes erroneous input data

used for predictions.
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