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Abstract. This project produced a Python language implementation of locally interpolated regression (LIR) and neural network 

(NN) algorithms from empirical seawater property estimation routines (PyESPERv1.01.01). These routines estimate total 10 

alkalinity, dissolved inorganic carbon, total pH, nitrate, phosphate, silicate, and oxygen from geographic coordinates, depth, 

salinity, and 16 combinations of 0 to 4 additional predictors (temperature and biogeochemical information), and were 

previously available only in the MATLAB programming language. Here we document modifications to reduce discrepancies 

between the implementations, calculate the disagreements between the methods, and quantify Global Ocean Data Analysis 

Project (GLODAPv2.2022) reconstruction errors with PyESPER. While the PyESPER routine based on neural networks 15 

(PyESPER_NN) faithfully reproduces the corresponding MATLAB routine estimates of properties that do not require 

anthropogenic carbon change information, PyESPER_LIR and—to a lesser extent—PyESPER_NN estimates for total pH and 

dissolved inorganic carbon do not exactly reproduce the MATLAB routine estimates due to differences in interpolation and 

extrapolation methods between the programming languages. While the MATLAB and Python LIR-based estimates are not 

identical, we show that they are similarly skilled at reproducing the GLODAPv2.2022 data product and are thus comparable.  20 

This project increases the accessibility of ESPERv1.01.01 algorithms by providing users with code in the freely available 

Python language and enables future ESPER updates to be released in multiple coding languages. 

1 Introduction 

Ship-based biogeochemical data, as compiled within the Global Ocean Data Analysis Project (GLODAP; Lauvset et al., 2022) 

have high precision and accuracy, but are seasonally biased and spatially sparse (Hauck et al., 2023). International efforts to 25 

deploy biogeochemical (BGC) profiling floats with broad spatial coverage and high temporal resolution (10 days) are ongoing 

(Bittig et al., 2019), with potential to greatly augment available ocean carbon cycle and biogeochemical data. These data can 

then support a wide variety of research topics and management applications (e.g., warming, acidification, eutrophication, 

deoxygenation, fisheries, and ecosystem studies). This strategy leverages the high precision and accuracy of ship-based 

measurements to calibrate and validate the BGC float sensors periodically throughout a float deployment.  To do this, machine 30 

learning and regression algorithms—which take advantage of the strong regional correlations between seawater properties in 

the open ocean, and especially the ocean interior (Bittig et al., 2018; Carter et al., 2017, 2021)—are used to map the ship-based 

information onto “reference depth” portions of the float profiles.  

 

The empirical seawater property estimation routines (ESPERv1.01.01, henceforth referred to as ESPERs), originally written 35 

in MATLAB programming language, aim to help realize the full potential of BGC float data by using machine learning 

techniques and regression strategies to predict total alkalinity (TA), dissolved inorganic carbon (DIC), pH on the total scale 

(pHT), phosphate, nitrate, silicate, and oxygen from commonly measured physical and BGC parameters (Carter et al., 2021). 
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The algorithms are used to calibrate float profiles (Maurer et al., 2021). In addition, since two carbonate system property 

measurements are necessary to fully quantify the carbonate system in seawater (Zeebe and Wolf-Gladrow, 2001) and BGC 40 

floats only have the capability to measure pHT, these algorithms have the potential to provide (calculated) TA or DIC as a 

secondary constraint for the marine carbonate system. ESPERs have also been used to map ship-based information across 

spatial and temporal scales for other applications including estimation of TA for adjustments of pH and fugacity of CO2 (fCO2) 

to in situ conditions for data products (Jiang et al., 2021), and estimation of TA and seawater properties necessary for estimation 

of ocean acidification indicators (Jiang et al., 2020; Sharp et al., 2024). Recent research has also shown that similar machine 45 

learning estimation algorithms have potential for  the development of four-dimensional data products such as the Gridded 

Ocean Biogeochemistry from Artificial Intelligence – Oxygen (GOBAI-O2; Sharp et al., 2023) and the Mapped Observation-

Based Oceanic DIC (MOBO-DIC; Keppler et al., 2020). 

1.1 Importance 

Tanhua et al. (2021) and others have argued that researchers should utilize workflows that produce findable, accessible, 50 

interoperable, and reusable (FAIR) data products. ESPERs are publicly available (findable) on Zenodo, with updates published 

to GitHub, free (accessible), and provide the option for users to cite a digital object identifier (DOI) for each version (reusable). 

However, until now ESPERs were only available in the proprietary MATLAB programming language, which posed a barrier 

to accessibility and interoperability that we aim to address.  

1.2 Goals 55 

This project aimed to create a freely available Python implementation of ESPERs (PyESPERv1.01.01, henceforth referred to 

as PyESPERs; Carter et al., 2021; Dias and Carter, 2025) that is equivalent to the MATLAB version within 2 × Estimate 

Uncertainties () for all estimated biogeochemical properties (TA, DIC, pHT, nitrate, phosphate, silicate, and oxygen). 

PyESPER code is freely available at Zenodo and updates will be made available at the GitHub repository (see Sect. “Code 

availability”). 60 

2 Methods 

ESPER algorithms were translated into Python coding language, while associated files were either translated into Python or 

read by Python as MATLAB files. Some original methods were required to allow interpolations to be similar in Python to 

those of MATLAB ESPERs.  

2.1 ESPERs 65 

ESPERs allow estimation of biogeochemical seawater properties using coordinates, depth, salinity, and other optional inputs 

from a single function call. While sharing a similar set of equations and required input data, ESPERs have two variants that 
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use locally interpolated regressions (ESPER_LIR) and neural networks (ESPER_NN), respectively, along with a mixed 

estimate (ESPER_Mixed) that is the mean of estimates from the two functions (Carter et al., 2017).   

2.1.1 Locally interpolated regressions 70 

The most recent versions of ESPER_LIRs (version 1.01.01; version 3 of LIRs) use a standard set of equations of the format 

shown by Eq. (1) to estimate up to seven different biogeochemical water properties using up to 16 equations with different 

combinations of input parameters (see Sect. “Appendix A”, Tables A1 and A2; Carter et al., 2021): 

𝑋 =  𝐶0  + ∑ 𝐶𝑖𝑃𝑖

𝑛

𝑖=1

 (1) 

 
where X is the estimated property (TA, DIC, pHT, nitrate, phosphate, silicate, or oxygen), C0 is the intercept, and Ci is the 75 

coefficient for each of the n predictors Pi. The intercepts (C0) and coefficients (Ci) vary with location (latitude, longitude, and 

depth) and are different for each of the predictor variables (Pi; Tables A1 and A2; Carter et al., 2021). The most recent ESPERs 

were trained and assessed on the GLODAPv2.2020 (Olsen et al., 2020) data product, which includes data from 946 cruises 

and spanning 1972–2019, and additional data sets from the Mediterranean Sea and Gulf of Mexico (Carter et al., 2021, 

Supplementary Information) taken from the Coastal Ocean Data Analysis Project (CODAP, Jiang et al., 2021) and the 80 

CARIMED data product (Álvarez et al., 2019).  

 

When the ESPER_LIR function is called, the routines interpolate a pre-determined grid of C’s (intercepts and coefficients) to 

user-defined locations. Linear interpolation is used within the grid and for extrapolation, and this method utilizes an underlying 

Delaunay triangulation with MATLAB’s scatteredInterpolant function (Carter et al., 2021). The three-dimensional 85 

interpolation algorithm is implemented differently in MATLAB and Python, and although both calculations are valid, this 

difference in implementation is the source of most disagreements we find and later quantify between ESPER and PyESPER. 

 

ESPER_LIR coefficients have been determined on a grid using a moving window regression strategy similar to the approach 

first outlined by Velo et al. (2013), resulting in a set of intercept and coefficient estimates for each of 16 equations for 7 90 

possible properties at 44,957 total locations on a 5° latitude (-84.5–85.5 N) x 5° longitude (-19.5–375.5 E)  x 33  depth (0–

5500 m) ocean interior grid subsampled from the World Ocean Atlas gridded product (Carter et al., 2016, 2017, 2021). These 

coefficients were fit using regressions relating the property of interest (X) to different combinations of up to five predictor 

properties (P, Tables A1 and A2), relating to each possible equation as in Eq. (1). Depth (scaled to 
1

25
) is included as a 

coordinate for coefficient interpolation, but depth is not used as a predictor for the current ESPER version (it was included in 95 

an earlier version, but only when predicting pHT; Carter et al., 2017). Data for each regression fit are selected from “windows” 

of data that are within 15° latitude, 30°/cosine(latitude) in longitude, and within either (100 + z/10) m depth or 0.1 kg m-3 of 

the estimated density of seawater at that coordinate location, where z is depth in m (Carter et al., 2021). If either the depth-
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based or the density-based criterion applies, data are selected for that location, which allows water masses to impact window 

selection along with depth. If fewer than 100 measurements fall within a window, the dimensions are doubled. A weighting 100 

term is applied to reduce to cost of regression misfits to data that are distant or at significantly different depths from the 

location, with a cap to prevent overfitting to nearby coordinates (see Carter et al., 2021). Regression coefficients (C0 and Ci) 

are then fit using Eq. (2), with separate regressions for northern hemisphere Atlantic, Mediterranean, and Arctic, and other 

global locations, to prevent interpolation across Central America or the Bering Strait.  

𝑋𝑊 =  (𝐶0  + ∑ 𝐶𝑖𝑃𝑖

𝑛

𝑖=1

) 𝑊 (2) 

 105 

 
PyESPER_LIR does not duplicate this portion of the effort but instead builds directly upon the grid of coefficients obtained 

for and utilized by the MATLAB implementation of ESPER_LIR.   

 

When the function is called, ESPER_LIR uses MATLAB’s scatteredInterpolant (linear interpolation and extrapolations) 110 

function to interpolate this previously-created grid of regression coefficients to the user-provided set of coordinates, resulting 

in coefficient estimates at the desired locations (Carter et al., 2021). This method uses a Delaunay triangulation of the scattered 

sample points to perform interpolations and extrapolations. Different valid mathematics can be used to obtain these Delaunay 

triangulations and to extrapolate and interpolate, and efforts to identify a Python method for these tasks that exactly replicated 

MATLAB results were unsuccessful. The most similar and least computationally intensive results to those of MATLAB’s 115 

scatteredInterpolant were produced by combining Python’s scipy package functions LinearNDInterpolator (interpolate 

subpackage) and Delaunay (spatial subpackage; Virtanen et al., 2020). However, since LinearNDInterpolator does not 

extrapolate, and other Python functions did not produce similar results to those of MATLAB when extrapolating, the gridded 

set of three-dimensional coordinates (44,957 locations based on the World Ocean Atlas) and corresponding coefficient 

estimates provided by ESPER_LIRs were expanded in MATLAB to 106,400 locations on a grid with estimates every 5 120 

latitude (-94.5–90.5 N) and longitude (-19.5–375.5 E) and up to 9000 m depth and applied to scatteredInterpolant within 

ESPER_LIR to provide coefficient estimates for the external locations through extrapolation. This grid, with equivalent 

coefficients within the original parts of the grid and extrapolations outside of the grid, was read in Python when LIRs were 

called. The expanded grid allowed Python functions to avoid extrapolations and rely solely on interpolation and triangulation 

methods when estimating coefficients at user-defined locations. While some of these locations are unphysical (e.g., ± >90º N 125 

or on land), the coefficients nevertheless provide valid extrapolations from MATLAB for the full possible domain that can 

then be interpolated in PyESPER_LIR. PyESPER_LIR otherwise replicated ESPER_LIR’s separation of data from the Atlantic 

Ocean, Mediterranean Sea, and Arctic Ocean and data from the Indo-Pacific and Southern Ocean regions.  
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During the creation of this expanded grid, a grouping error was observed in current versions of MATLAB ESPER_LIRs. 130 

Specifically, the mirrored portion of the grid found at < 0º E and > 360º E and north of 40º S are not correctly flagged as 

belonging to the Atlantic grid. The practical effect of this bug was that estimates near the Prime Meridian and near the cutoff 

between the Southern Ocean and the Atlantic Ocean had extrapolated coefficients instead of interpolated coefficients. This 

bug was fixed for both MATLAB ESPER_LIR and PyESPER_LIR comparisons for this paper, and a fixed grouping routine 

is now provided at the original MATLAB ESPER repository with corresponding documentation and will be included in future 135 

updates to ESPER_LIRs. 

2.1.2 Neural networks 

ESPER_NNs use feed-forward neural networks with latitude, depth, cosine(longitude-20°E), cosine(longitude-110°E) and the 

parameters from Table A2 as predictors. Four neural networks are used in each of the two ocean regions, which are the same 

as those used for LIRs (Atlantic-Mediterranean-Arctic and Indo-Pacific-Southern), resulting in 896 total neural networks (8 140 

for each of 16 combinations of predictors for 7 property estimates; Carter et al., 2021). A committee (ensemble) of four 

previously-created neural networks with different combinations of neurons and hidden layers, including a single one-hidden-

layer network with 40 neurons and three two-hidden-layer networks with 30/10, 25/15, and 20/20 neurons in the first/second 

hidden layers is used to minimize the impact of errors from any one neural network (Carter et al., 2021).  

 145 

In ESPER_NN the neural networks are encoded as functions to avoid requiring access to the Machine Learning toolbox within 

MATLAB. Here we further translate these functions to Python. The resultant Python functions replicate the functions in 

ESPER_NN to within machine precision. ESPER_NNs linearly interpolate between the two regions of neural networks by 

latitude across the Southern Atlantic Ocean and Bering Sea and between the North Pacific and Arctic Oceans. Zonal transitions 

in the Southern Atlantic and Indo-Pacific-Southern Ocean network are also implemented. This interpolation uses custom-150 

written 1 or 2D interpolations that are handled identically in both programming environments.  

2.1.3 Mixed estimates 

The mixed estimate for each input location is the mean of the LIR and NN estimates and therefore is trivially reproduced by a 

simple single function call within Python.  

2.1.4 Anthropogenic carbon  155 

The impacts of anthropogenic carbon (Cant) are approximated in ESPER and PyESPERv1.0, which rely on a 1 x 1 gridded 

transit time distribution (Waugh et al., 2006) based Cant product referenced to the year 2002 (Lauvset et al., 2016), and estimate 

Cant using a transient steady state assumption (Gammon et al., 1982; Gruber et al., 2019; Tanhua et al., 2007).  The ESPER 

estimate assumes that oceanic Cant increases proportionally to atmospheric anthropogenic CO2, and furthermore that the 
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structure of the Cant vertical profile remains constant with continuous exponential increases of atmospheric CO2 and ocean Cant 160 

according to Eq. (3; Carter et al., 2021). 

 
𝐶𝑎𝑛𝑡_𝑦𝑒𝑎𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑎𝑛𝑡_𝑦𝑒𝑎𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑒0.018989(𝑦𝑒𝑎𝑟−2002) 

(3) 

The coefficient in Eq. (3) is derived from Gruber et al.'s (2019) assumption of a 28% increase in Cant from 1994–2007, and 

enables estimating Cant for a location in a desired year when Cant is known for that same location in a reference year (2002; 

Carter et al., 2021). This approach does not allow for non-steady-state variations, which is accounted for in overall uncertainty 165 

estimates, and is noted as a significant source of uncertainty for projections beyond ~2030.  

ESPERs were trained on data for pHT and DIC which were transformed to the year 2002, then modified back to the original 

measurement dates using Eq. (3). ESPERs and PyESPERs estimate the Cant component of DIC and pHT in output variables for 

2002 by interpolating the 2002 Cant grid to user-provided coordinates and then applying Eq. (3) to estimate Cant for the user-

requested estimate year. As with original ESPERs, this method is not meant to be used when Cant is of primary interest, but 170 

rather provides a means of quickly adjusting DIC or pHT to a reference year (Carter et al., 2021). Likewise, these methods are 

not adequate for making reliable predictions beyond the year 2030 (Carter et al., 2021). 

 

2.2 Uncertainty estimation 

ESPERs and PyESPERs return depth- and salinity-dependent uncertainties for each property at the 1𝛔 (one standard 175 

uncertainty) level, meaning approximately 95% of new open-ocean measurements from GLODAPv2.2022 should fall within 

± twice the ESPER uncertainties (Carter et al., 2021). As in Carter et al. (2021), baseline error estimates in depth and salinity 

space (EX_Est) are interpolated based on root mean square errors (RMSEs) of all predictions from validation versions of the 

routines within bins of salinity and depth. ESPER_LIRs and PyESPER_LIRs scale these uncertainties using user-provided 

predictor uncertainty estimates (EPi_Provided). Eq. (4) is used when user-provided uncertainties exceed default assumed input 180 

uncertainties (EPi_Default; Table A3): 

 

𝐸𝑋_𝑂𝑢𝑡𝑝𝑢𝑡  =  √𝐸𝑋_𝐸𝑠𝑡
2  −  ∑ (

𝜕𝑋

𝜕𝑃𝑖

𝐸𝑃𝑖_Default)

2𝑛

𝑖=1

+ ∑ (
𝜕𝑋

𝜕𝑃𝑖

𝐸𝑃𝑖_Provided)

2𝑛

𝑖=1

 
(4) 

 

where 
𝜕𝑋

𝜕𝑃𝑖
 is the sensitivity of the property estimate X to the ith predictor Pi. ESPER_NNs and PyESPER_NNs estimate 

sensitivities by iteratively perturbing the input predictors if the user specifies uncertainties that are larger than default. Mixed 185 

uncertainties are the minimum uncertainties assessed for LIR and NN estimates.  
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2.3 Assessment 

For many applications, the most critical validation is a test of the reconstruction of withheld data. However, such an exercise 

requires training alternative versions of the method after withholding data, and, as of now, PyESPERv1.0 is not separately 

trained, but is instead reliant on the ESPER training that was performed and validated previously with MATLAB (Carter et al. 190 

2021). For this publication, we aim to instead show that PyESPERv1.0 and ESPER provide quantitatively similar results and 

assert that the validation presented earlier for ESPER in MATLAB can be considered to also be appropriate for PyESPER in 

all but a limited number of specific exceptional cases. To support this claim, PyESPERv1.0 and ESPER were used to estimate 

values for the GLODAPv2.2022 data product (1,381,248 sets of measurements; Fig. 1) with each equation and output variable 

combination. This dataset included a wide range of input data, and comparison of PyESPERv1.0 and ESPER was primarily 195 

considered from application to the high-quality “open ocean” (o) portion of the GLODAP dataset as in Carter et al. (2021), 

defined as GLODAP data with only World Ocean Circulation Experiment (WOCE) data quality control flag categories of 2 

(Acceptable) and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible 

input and measurement data, and for salinities between 30–37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHT, and 

764,301 for phosphate, nitrate, silicate, and oxygen). Additional comparison with the entire GLODAPv2.2022 dataset (“whole 200 

ocean” or w), including NaNs and anomalous data with salinities 30 and temperatures 0 °C, which are not recommended for 

use with ESPERs, is presented in Sect. “Appendix B”. These comparisons are used as a rigorous test of the fidelity of the 

PyESPERv1.0 estimates to the ESPER estimates. Resulting estimates were compared graphically and with normalized root 

mean square error (RMSEn; equivalent to RMSE divided by the mean of the MATLAB estimate for each variable) for each 

equation case globally and regionally, and across depths. RMSEn was used because it allows for comparison between variables 205 

of different scales. Additionally, where measured values were present in the dataset, both ESPER and PyESPERv1.0 were 

validated against the measured data, though, again, this is not a validation of the method as much as a check that both variants 

provide similar values.  

2.3.1 DIC application 

As an additional comparison of the LIR method differences, DIC estimates from both PyESPER_LIR and ESPER_LIR were 210 

applied to the Roemmich and Gilson Argo-derived climatology (Roemmich and Gilson, 2009) to create mapped annual surface 

estimates of DIC.  
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Figure 1: Location of GLODAPv2.2022 data (n=1,381,248) used to compare PyESPER to MATLAB ESPER estimates 

(a), and histograms of the distributions of measured GLODAPv2.2022 variables used as inputs for PyESPERv1.01.01 215 

and ESPER algorithms (b-g). 
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3 Results and Discussion 

PyESPERv1.0 and ESPER produced open ocean estimates with mean differences (Python estimate – MATLAB estimate) of 

<0.04 for all parameters, and NNs had smaller mean differences of <0.004 for all parameters (units are mol kg-1 except for 

pHT) estimated from open ocean GLODAPv2.2022 data, although the standard deviations of these differences and uncertainties 220 

associated with estimates were at times larger than the mean differences (Tables 1 and 2). The greatest RMSEn was 2.08x10-2 

for silicate estimates using LIRs. PyESPER_NN functioned as an equivalent data product to ESPER_NN for all data. For open 

ocean data that is within the World Ocean Atlas Grid of <5500 m depth, PyESPER_LIRs functioned similarly to ESPER_LIRs, 

with a large majority of identical estimates produced between the two data products. 

3.1 Data product validation 225 

Results of comparisons between MATLAB ESPERs and PyESPERs are described below. 

3.1.1 Locally interpolated regressions 

When compared to the ESPER_LIR results for the open ocean (o) GLODAPv2.2022 dataset, all equation-case and desired 

outcome variable combinations from PyESPER (PyESPER_LIR – ESPER_LIR estimates) resulted in mean differences of 

±0.04 (Table 1). Mean (standard deviation; RMSEn) PyESPER – ESPER_LIR difference for TA was -4.8x10-4 µmol kg−1 230 

(1.1 µmol kg−1; RMSEn=4.6x10-4), DIC was 3.4x10-2 µmol kg−1 (1.6 µmol kg−1; RMSEn=7.3x10-4), pHT was -5.6x10-5 

(4.2x10-3; RMSEn=5.4x10-4), phosphate was 3.1x10-4 µmol kg−1 (1.4x10-2 µmol kg−1; RMSEn=8.4x10-3), nitrate was 2.2x10-

3 µmol kg−1 (3.1x10-1 µmol kg−1; RMSEn=1.3x10-2), silicate was 2.3x10-2 (1.2 µmol kg−1; RMSEn=2.1x10-2), and oxygen 

was 4.0x10-3 µmol kg−1 (2.1 µmol kg−1; RMSEn=1.1x10-2; Table 1).  The very wide range of input data resulted in a wide 

range of estimates from both ESPER_LIRs and PyESPER_LIRs for all variables (Table 1; Fig. 2; for w see Sect. “Appendix 235 

B”, Fig. B1), representing the large range of biogeochemical property values that can be found in the oceans. PyESPER_LIR 

and ESPER_LIR results worked similarly well in predicting measured values at locations, even with the outlier and unusual 

input data used (see Table B1), suggesting that Python estimates, although not identical to MATLAB estimates for these 

interpolations, were equivalently valid reconstructions.  

 240 
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Figure 2: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to 250 

MATLAB estimates (x-axis) for open ocean (o) data and all equations combined for TA (a, 13,384,096 total estimates 

from all equations), DIC (b, 13,384,096 estimates), pHT (c, 13,384,096 estimates), phosphate (d, 13,384,096 estimates), 

nitrate (e, 12,718,592 estimates), silicate (f, 12,640,896), and oxygen (g, 12,757,792 estimates) calculated from 

GLODAPv2.2022 with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) 

and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and 255 

measurement data, and for salinities between 30–37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHT, and 764,301 

for phosphate, nitrate, silicate, and oxygen). Units for all except pHT are in µmol kg-1. Note the differences in x- and y-

axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates.  
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PyESPER_LIRs were within 2 (~95% of measurements should fall within this uncertainty level) for most ocean regions, with 260 

a few exceptions which occurred predominantly in coastal areas or deep waters (Figs. 3 and 4). These locations aligned well 

with places where coefficients were extrapolated in the MATLAB implementation (see Sect. 2.1.1, “Locally interpolated 

regressions”; Figs. 3, 4, and 5; for w Fig. B2 and B3). Within regions where MATLAB was interpolating, far outliers were 

uncommon (Figs. 3, 4, 5, B2, and B3). When ESPER_LIR and PyESPER_LIR were applied to temperature and salinity from 

the Roemmich and Gilson climatology for the year 2023 (Roemmich and Gilson, 2009), patterns of surface DIC distribution 265 

were similar with a few minor nuances (Fig. 6). Notably, low DIC estimates covered a broader spatial extent in the western 

equatorial Pacific and Indian Oceans for PyESPER_LIR estimates, and PyESPER_LIR appeared to have a slightly low bias in 

some places relative to ESPER_LIR. Beyond these minor differences, the mapped DIC demonstrates the similarity of the data 

products’ functionality in an applied setting. While ESPER_LIR and PyESPER_LIR do not produce quantitatively identical 

estimates, it should be noted that both routines perform similarly well at reconstructing the GLODAPv2.2022 data product 270 

(Table 1; for w Table B1). These routines should not be considered identical but are comparable.   

3.1.2 Neural networks 

When compared to the ESPER_NN results for the open ocean (o) GLODAPv2.2022 dataset, all equation-case and desired 

outcome variable combinations from PyESPER_NN (PyESPER – ESPER_NN estimates) resulted in mean differences of 

±0.004 (Table 2), a much smaller difference than for LIR comparisons. Mean (standard deviation; RMSEn) offset for TA 275 

for PyESPER_NN – ESPER_NN was -4.5x10-12 µmol kg−1 (5.9x10-9 µmol kg−1; RMSEn=2.5x10-12), DIC was -3.0x10-3 µmol 

kg−1 (9.3x10-2 µmol kg−1; RMSEn=4.2x10-5), pHT was 1.1x10-5 (2.3x10-4; RMSEn=3.0x10-5), phosphate was -6.2x10-14 µmol 

kg−1 (6.6x10-11 µmol kg−1; RMSEn=1.3x10-10), nitrate was -7.8x10-13 µmol kg−1 (8.9x10-10 µmol kg−1; RMSEn=3.8x10-11), 

silicate was -1.2x10-12 µmol kg−1 (2.0x10-9 µmol kg−1; RMSEn=3.4x10-11), and oxygen was -4.4x10-13 µmol kg−1 (2.1x10-10 

µmol kg−1; RMSEn=1.1x10-12; Table 2).  Since a very wide range of input data were used, a wide range of estimates were 280 

produced from both ESPER_NNs and PyESPER_NNs for all variables (Fig. 7), representing the high variability that can be 

found in the oceans (especially coastal regions, some of which were included in the “open ocean” dataset due to having 

salinities between 30–37 and quality-controlled data). Both PyESPER_NN and ESPER_NN results were nearly identical, even 

when outlier results were obtained from unusual input data from environments where ESPERs are not recommended for use 

(for example, resulting in negative DIC estimates in Fig. B4; see also Table B2). The largest relative disagreements were found 285 

for DIC and pHT, though these disagreements remained small relative to measurement uncertainties.  These larger offsets are 

attributed to the programming language differences in the interpolation of the Cant adjustment, which is only applied to these 

two properties. 
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Figure 3: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total 290 

estimates n=13,384,096 for TA (a), DIC (b), pHT (c), and phosphate, 12,718,592 for nitrate (d), 12,640,896 for silicate 

(e), and 12,757,792 for oxygen (f)) for the open ocean (o), where small blue circles represent differences <2 x 

uncertainties of the MATLAB estimates (n=13,344,924 for TA, 13,354,980 for DIC, 13,349,438 for pHT, 13,357,843 for 

phosphate, 12,688,861 for nitrate, 12,597,608 for silicate, and 12,721,483 for oxygen), and red circles represent 

differences >2 x uncertainties of the MATLAB estimates (n=39,172 for TA, 29,116 for DIC, 34,658 for pHT, 26,253 for 295 

phosphate, 29,731 for nitrate, 43,288 for silicate, and 36,309 for oxygen). Open ocean estimates are calculated from 

GLODAPv2.2022 with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) 

and secondary quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and 

measurement data, and for salinities between 30–37.  
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 300 

 

Figure 4: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally 

interpolated regression estimates  are greater than 2 x the estimate uncertainties for the open ocean (o, n=13,344,924 

for TA (a), 13,354,980 for DIC (b), 13,349,438 for pHT (c), 13,357,843 for phosphate (d), 12,688,861 for nitrate (e), 

12,597,608 for silicate (f), and 12,721,483 for oxygen (g)). Open ocean estimates are calculated from GLODAPv2.2022 305 

with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) and secondary 

quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and measurement 

data, and for salinities between 30–37.  

https://doi.org/10.5194/egusphere-2025-458
Preprint. Discussion started: 11 April 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

 
Figure 5: Map of locations where MATLAB was interpolating (n=1,365,170, blue) and extrapolating (n=16,078, red) 310 

from the grid to GLODAPv2.2022 data (a) and depth of extrapolations (b). 

3.1.3 Anthropogenic carbon estimates 

Although inconsistencies in results occur between Python and MATLAB when interpolating (same issue noted in Sect. 2.1.4, 

“Anthropogenic carbon”), anthropogenic carbon (Cant) estimates were similar between the two versions of ESPER. This was 

demonstrated by differences in DIC and pHT estimates for NNs, which only interpolate when estimating the contribution of 315 

Cant to estimates (Fig. 7). The next generation of ESPER updates will include a new method for estimating Cant (Tracer-Based 

Rapid Anthropogenic Carbon Estimation, or TRACEv1; Carter et al., submitted), which uses neural networks and should 

eliminate the need for interpolation. Currently, when Cant estimates are required, the results from PyESPER_NNs are 

functionally identical to those from ESPER_NNs.   

3.2 Timing 320 

PyESPERs take considerably longer than ESPERs to produce estimates. On a MacBook Air using Python Jupyter Notebook 

with standard internet connection, PyESPER_NN produced results 0–1500 x slower than ESPER_NN, while PyESPER_LIR 

produced results about 7–500 x slower than ESPER_LIRs, with magnitude of the slowdown dependent upon the number of 

variable inputs and equation cases requested and number of estimates required (Table 3). ESPER_NNs were the fastest to 

execute, and took <2 s for all time tests, even when large datasets and all variable-equation case scenarios were requested. 325 

ESPER_LIRs were the next-fastest, requiring <33 s for all time tests, followed by PyESPER_NNs, which typically required 

5–15 s to execute, but required >1400 s (23 min) for running large datasets and all variable-equation case scenarios. 

PyESPER_LIRs were the slowest, and typically required 22–500 s to execute, but the longest scenario required 7530 s (125 

min; Table 3). It is possible that this code can be further optimized for speed in future updates.  

 330 
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Figure 6: Maps of 2023 mean annual surface MATLAB ESPER_LIRs (a) and Python PyESPER_LIRs (b) DIC 

estimates (units are µmol kg-1) from application of ESPERs to the Roemmich and Gilson Argo-based (Argo, 2000) 

climatology (Roemmich and Gilson, 2009).  335 
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 345 

Figure 7: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB estimates 

(x-axis) for open ocean (o) data and all equations combined for TA (a, 4,899,512 total estimates from all equations), DIC 

(b, 5,497,004 estimates), pHT (c, 3,188,864 estimates), phosphate (d, 12,228,432 estimates), nitrate (e, 12,228,432 

estimates), silicate (f, 12,228,432 estimates), and oxygen (g, 12,228,560 estimates) calculated from GLODAPv2.2022 

with only World Ocean Circulation Experiment data quality control flag categories of 2 (Acceptable) and secondary 350 

quality control flag categories of 1 (subjected to full secondary quality control) for all possible input and measurement 

data, and for salinities between 30–37 (n=306,227 for TA, 343,580 for DIC, 199,304 for pHT, and 764,301 for phosphate, 

nitrate, silicate, and oxygen). Units for all except pHT are in µmol kg-1. Note the differences in x- and y-axes scales. 

RMSEn is the normalized root mean square error, or the RMSE divided by the mean of all estimates from 

MATLAB_NN.  355 
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Table 3: Time required to produce estimates for PyESPERv1.01.01s and ESPERs (LIRs and NNs) for different desired 

variable, equation-case, and number of estimates scenarios. 

Variable Equation(s) 

Number of 

Estimates 

PyESPER_NN 

time (s) 

ESPER_NN 

time (s) 

PyESPER_LIR 

time (s) 

ESPER_LIR 

time (s) 

TA 1 10 6.55 0.01 22.35 0.77 

TA 1 100 5.87 0.01 19.98 0.60 

TA 2 100 5.82 0.01 25.90 0.79 

TA 3 100 5.79 0.01 22.82 0.81 

TA 4 100 5.90 0.01 24.01 0.78 

TA 5 100 5.80 0.00 23.60 0.75 

TA 6 100 5.88 0.01 22.42 0.79 

TA 7 100 5.88 0.00 23.03 0.78 

TA 8 100 5.84 0.00 22.51 0.80 

TA 9 100 5.87 0.00 22.42 0.81 

TA 10 100 5.82 0.01 22.60 0.74 

TA 11 100 5.84 0.00 22.28 0.74 

TA 12 100 5.90 0.00 22.43 0.75 

TA 13 100 5.88 0.00 22.37 0.79 

TA 14 100 5.82 0.01 22.46 0.77 

TA 15 100 5.81 0.00 22.35 0.84 

TA 16 100 5.81 0.01 22.57 0.74 

TA 1-16 100 11.06 0.04 312.13 0.62 

TA 1 1000 11.50 0.03 29.69 0.76 

TA 1 10,000 61.54 0.12 57.59 0.83 

TA 1 100,000 950.78 0.62 325.87 1.55 

DIC 1 100 5.86 1.55 32.51 2.69 

DIC 1-16 100 10.86 1.53 365.58 1.54 

pH 1 100 6.09 0.06 54.65 0.81 

pH 1-16 100 15.37 0.46 766.74 3.41 

Phosphate 1 100 5.85 0.01 23.46 3.39 

Phosphate 1-16 100 11.01 0.06 376.30 0.80 

Nitrate 1 100 5.85 0.01 23.07 0.74 

Nitrate 1-16 100 11.04 0.05 364.13 3.56 

Silicate 1 100 5.84 0.02 26.84 3.64 

Silicate 1-16 100 11.02 0.04 365.34 0.82 

Oxygen 1 100 6.97 0.01 24.60 0.78 

Oxygen 1-16 100 10.98 0.04 385.28 2.15 

All Variables 1 100 11.81 0.01 194.31 13.86 

All Variables 1 10,000 147.26 0.10 561.29 15.17 

All Variables 1-16 100 49.53 0.09 3182.56 15.26 

All Variables 1-16 10,000 1443.63 1.67 7530.23 32.13 
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3.3 Future directions 

Updated ESPERs will be trained and assessed using GLODAPv2.2023 (or later versions), which includes 1108 cruises 

(compared to 946 cruises from GLODAPv2.2020, the current data product used. Additionally, future ESPERs will incorporate 360 

depth (z) as an optional predictor variable for consistency with LIPHR, a prior version for estimating pHT (Carter et al., 2017). 

The implementation of updated Cant estimation methods should additionally improve the accuracy and efficiency of both 

ESPERs and PyESPERs when Cant estimates are required. Future versions of ESPER written in MATLAB may be modified to 

improve interoperability with the Python implementation (i.e., to ensure the interpolation routines are identical in all instances 

between languages). 365 

4 Data Availability 

Data used for reconstruction and estimate comparisons is available through GLODAP (https://glodap.info; see Lauvset et al., 

2022 and Olsen et al., 2020). The temperature and salinity gridded climatology created by Roemmich & Gilson (2009) was 

created with data from the Argo Program. 

5 Code Availability 370 

PyESPERv1.01.01 preliminary Jupyter Notebook, affiliated files, and analyses files are available through LMD’s GitHub 

page (https://github.com/LarissaMDias) and archived through Zenodo (doi: 10.5281/zenodo.15133085) . Updates to 

PyESPERv1.01.01 will also be published through LMD’s GitHub page and archived through Zenodo. ESPERs (Carter, 

2021) and original associated files used in creation of PyESPERv1.01.01 are available at BRC’s GitHub page at 

https://github.com/BRCScienceProducts. Input data used for comparisons are available through the GLODAP website 375 

(https://glodap.info).  

6 Conclusions 

A near-replicate of ESPERs has been produced in the freely available Python programming language. This algorithm data 

product will allow Python users or researchers with limited funds an alternate, free method for using ESPERS (other than the 

proprietary MATLAB), increasing the accessibility of the original ESPER algorithms. The same logic applied to the original 380 

MATLAB ESPERs was applied within the Python coding language (PyESPERs, version 1.01.01), and results have 

demonstrated comparability to ESPER estimates. Estimates from PyESPER_NNs precisely align with those from ESPER_NNs 

for all equations and desired outcome variable combinations (Fig. 7) and estimates from these two routines are essentially 

identical. PyESPER_LIR estimates differ from ESPER_LIR estimates for some coastal and deep-water regions between the 

two coding languages due to triangulation, extrapolation, and interpolation differences, but were more similar throughout all 385 
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portions of the open ocean (Figs. 2, 3, and 4). Notably, PyESPER_LIR performs equivalently to ESPER_LIR when 

reconstructing the training data from GLODAPv2.v2022, so estimates produced from these two routines should be considered 

comparable rather than identical. Nevertheless, we do not recommend using PyESPER_LIR in coastal or deep (>5500 m) 

waters when primarily interested in comparing results with those of the MATLAB implementation of ESPER_LIR. Future 

updates to ESPERs will include updates to PyESPERs, with adjustments to allow for greater consistency and speed.  390 

7 Appendices 

Appendix A: ESPER specifications 

Sets of equations, predictor variables, and measurement uncertainties used in ESPER and PyESPER (adapted from Carter et 

al., 2021) are shown below.  

 395 
Table A1: Input predictor variable combinations used for each ESPER equation (adapted from Carter et al., 2021), 

where S is salinity, T is temperature, and A, B, and C are defined in Table S2 (below). 

Equation Number Predictor Variables 

1 S, T, A, B, C 

2 S, T, A, C 

3 S, T, B, C 

4 S, T, C 

5 S, T, A, B 

6 S, T, A 

7 S, T, B 

8 S, T 

9 S, A, B, C 

10 S, A, C 

11 S, B, C 

12 S, C 

13 S, A, B 

14 S, A 

15 S, B 

16 S 
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 400 

 

 

 

 

 405 
Table A2: Input predictor variables (A, B, and C) for each estimated property (adapted from Carter et al., 2021). 

Estimated Property A B C 

TA Nitrate Oxygen Silicate 

DIC Nitrate Oxygen Silicate 

pHT Nitrate Oxygen Silicate 

Phosphate Nitrate Oxygen Silicate 

Nitrate Phosphate Oxygen Silicate 

Silicate Phosphate Oxygen Nitrate 

Oxygen Phosphate Nitrate Silicate 

 

Table A3: Default measurement uncertainties (EPi_Default) for ESPERs and PyESPERs (adapted from Carter et al., 

2021), where 𝜃 is potential temperature. 

Property Units Uncertainty 

S – 0.003, absolute 

𝜃 ℃ 0.003, absolute 

Phosphate µmol kg-1 2%, relative 

Nitrate µmol kg-1 2%, relative 

Silicate µmol kg-1 2%, relative 

Oxygen µmol kg-1 1%, relative 

Appendix B: Comparison using entire GLODAPv2.2022 410 

Results of comparisons of PyESPER with ESPER for the entire GLODAPv2.2022 dataset, including the entire oceanic and 

coastal salinity range and data of all quality control flag categories are shown below.  

 

 

 415 
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Figure B1: Difference between Python and MATLAB locally interpolated regression estimates (y-axis) compared to 425 

MATLAB estimates (x-axis) for whole ocean (w) data and all equations combined (22,099,968 total estimates from all 

equations for each variable), for TA (a), DIC (b), pHT (c), phosphate (d), nitrate (e), silicate (f), and oxygen (g) derived 

using all equations and calculated from entire GLODAPv2.2022 data, including NaN’s, coastal data, and all data 

quality control flag categories (n=1,381,248). Units for all except pHT are in µmol kg-1. Note the differences in x- and y-

axes scales. RMSEn is the normalized root mean square error, or the RMSE of all divided by the mean of all MATLAB 430 

estimates. The large range of sometimes unrealistic estimates along the x-axis can be attributed to anomalous and 

sometimes erroneous input data used for predictions. 
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Figure B2: Map of differences between Python and MATLAB ESPER locally interpolated regression estimates (total 

estimates n=22,099,968 for all variables) for the whole ocean (w), where small blue circles represent differences <2 x 435 

uncertainties of MATLAB estimates (n=22,034,967 for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHT (c), 

22,057,220 for phosphate (d), 22,045,770 for nitrate (e), 22,024,674 for silicate (f), and 22,045,827 for oxygen (g)), and 

red circles represent differences >2 x uncertainties of MATLAB estimates (n=65,001 for TA, 45,920 for DIC, 54,642 for 

pH, 42,748 for phosphate, 54,198 for nitrate, 75,294 for silicate, and 54,141 for oxygen). Whole ocean estimates are 

calculated from the entire GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag 440 

categories (n=1,381,248). 
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Figure B3: Map of locations and depths (colorbar) where differences between Python and MATLAB ESPER locally 

interpolated regression estimates are greater than 2 x the estimate uncertainties for the whole ocean (w, n=22,034,967 445 

for TA (a), 22,054,048 for DIC (b), 22,045,316 for pHT (c), 22,057,220 for phosphate (d), 22,045,770 for nitrate (e), 

22,024,674 for silicate (f), and 22,045,827 for oxygen (g)). Whole ocean estimates are calculated from the entire 

GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag categories (n=1,381,248). 
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 455 

 

Figure B4: Difference between Python and MATLAB neural network estimates (y-axis) compared to MATLAB 

estimates (x-axis) for whole ocean (w) data and all equations combined for TA (a, 17,802,134 total estimates from all 

equations), DIC (b, 17,802,134 estimates), pHT (c, 17,799,566 estimates), phosphate (d, 17,802,134 estimates), nitrate (e, 

17,395,954 estimates), silicate (f, 17,445,310 estimates), and oxygen (g, 17,220,360 estimates) derived using all equations 460 

and calculated from entire GLODAPv2.2022 dataset, including NaN’s, coastal data, and all data quality control flag 

categories (n=1,381,248). Units for all except pHT are in µmol kg-1. Note the differences in x- and y-axes scales. RMSEn 

is the normalized root mean square error, or the RMSE of all divided by the mean of all estimates. The large range of 

sometimes unrealistic estimates along the x-axis can be attributed to anomalous and sometimes erroneous input data 

used for predictions. 465 
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